
Journal of Statistical Physics, Vol. 6, No. I, 1972 

8upepposition Approximations from a 
Variation Principle 
H. Reiss 

Receit'ed Norember 10, 1971 

A variation principle is introduced involving the n-particle molecular distri- 
bution function (where I ~ n ..~ N) for a fluid containing N molecules. An 
integral involving any approximate n-particle distribution function proves 
to define a least upper bound to the truc system free energy. This integral 
can, therefore, be minimized with respect to the form of a trial distribution 
function to provide a best estimate to the exact distribution function. When 
no other constraints, save the requirement of normalization, are applied 
to the trial function, the r corresponds to the exact function. Using 
this variation principle, it is possible to demonstrate that the optimum triplet 
superposition approximation is the Krikwood approximation, and that the 
optimum quadruplet approximation is the form suggested by Fisher and 
Kopeliovich. Furthermore, all higher.order optimum superposition approxi- 
mations are specified. 

KEY WORDS: Correlation functions; hierarchy; upper bound: Helmholtz 
free energy. 

I .  I N T R O D U C T I O N  

I f  we denote by Pt~3 the triplet specific distribution function (Hil l , ' "  pp. 
181-182), then the Kirkwood superposition approximation assumes the form 

e = ,  = v~e,o.eo3pt3 O) 

in which Vis the volume of the system and Ply., P = ,  and Pls are pair specific 
dis t r ibut ion functions on particles 1 and 2, 2 and 3, and 1 and 3, respectively. 
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There are necessary relationships between P m  and any of the pair functions, 
of  the type 

P'~ = f v Ptza dra (2) 

where dr 3 is the volume element of the coordinates of particle 3. Indeed, this 
is the meaning of the pair specific distribution functions appearing in Eq. (I). 

On the other hand, we might replace Eq. (1) with 

P123 = ~12~23~13 (3) 

in which the q~'s, which also depend upon pairs of the indicated coordinates, 
need not be pair specific distribution functions. Then, according to Eq. (2) ,  

Plo. = ff12 f v Czar dr3 (4) 

Thus, Eqs. (3) and (4) could be substituted into the hierarchial integrodiffe- 
rential equation (Hill/1) Sections 32 and 33), involving the triplet and pair 
distribution functions, to provide a determinate equation for the ~'s. 

Equation (3) is a more general superposition approximation, and one 
wonders whether ~ functions can be found which would make it superior to 
Eq. (1). Even more important, if we advance to consideration of super- 
position for the higher-order distribution functions, many possible products 
and quotients of lower-order distribution functions are possible, and again we 
have the problem of the optimum choice. 

In what follows, we shall formulate a variation principle in terms of 
which such choices can be made (relative, ofcourse, to the variation principle), 
It turns out that for the triplet function, Eq. (3), is indeed the optimum choice. 
Furthermore, the optimum choice for any higher-order function is specified. 
Beyond the triplet, the q~'s are not simply lower-order distribution functions. 

2. THE V A R I A T I O N  PRINCIPLE 

Consider a fluid system containing N of one kind of molecule, in which n 
specified molecules are fixed at the points r t ,  r2 ..... r , .  The configurational 
partition function for this system will be denoted by Z({rn}), while the configu- 
rational partition function without the n particles constrained to fixed 
positions is Z. Clearly, the specific n-tuplet distribution function on the n 
particles will be 

e({r.}) ----- Z({r.})IZ (5) 

The Helmholtz free energy with the n particles fixed is 

A({r,}) = - - k T  In Z({rn}) (6) 
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while in the case they are not  fixed, it is 

A = - - kT  In Z (7) 

Subst i tu t ion  o f  Eqs. (6) and (7) into Eq. (5) yields 

A({r.}) = - - k r l n  e({r.}) + A (8) 

Now,  s u p p o s e  we have some approx ima t ion ,  P.({r .}) ,  to P({r~}). Then 
we define the free energy cor responding  to this approx ima te  distribution-~: 

A ,  ---- S -.- f v e*t~r"}) A({r.}) d{r.} 

+ kT  f . . .  f v P,({r .})  In P. ({r .})  d(r,,} (9) 

where the last term is addi t iona l  en t ropy  due to the mult ipl ici ty o f  confi- 
c ~t gura t ions  avai lable  to the n particles and d~r~, s tands for the volume element 

drx drz- - -dr . .3  I f  we subst i tute Eq. (8) into (9) and require the normal iza t ion  

f "" f vP.({r.})d{r.} = 1 (10) 

A word about the interpretation of A. is in order. Suppose .a powerful benefactor supplied 
us with partial information concenling the thermodynamic properties of the system by 
providing the exact values of A({r.~) for all {r.}. We wish to make maximum use of this 
partial information to compute A, the full free energy of the system. To this end, we 
guess at the function P({r,,}) in the hope that some further principle will be available to 
assist with the process of guessing. We denote the guessed value of P({r~}) by P.({rn}). 
Now, since, within the approximation, the fraction of time which the system spends in 
d{r.} is given by P.({r.})d{r.}, the contribution to A from this configuration might, at 
first, be taken as P.({r.})A({r.})d{r.}, the integrand of the first integral in Eq. (9). The 
first integral itself is the sum of contributions from the whole of configuration space. 

However, the full value of A must also include entropy contributions arising from the 
uncertainty as to which configuration, {G}, the system is actually in. The second term 
accounts for this. 

Thus, A,  represents the best estimate of A possible, based on the information in hand 
concerning A({r.}) and a particular guess at P({r.}), P.({r.}). In this sense, it represents 
the maximum immediate use of the information bequeathed by the benefactor. We 
improve this use by refining P.({r.}) through application of the variation principle. 

s The origin of this last term is perhaps seen more clearly if we consider the exact distribu- 
tion function P({r.}) ratbet than P.({r.}), and compute 

Substituting in this equation from Eqs. (5) and (6), we obtain 

 =kTf 
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we obtain 

A ,  = A + kT f ..- f r P,({r.}) ln[e,({r.})/P({r.})] d{r.} (I 1) 

Now, since in addition to Eq. (10) we have 

f "" fvP({r .})d{r .}  :::1 (12) 

it is easy to show (properties of convexity) that the integral at the right must 
always be positive, no matter the choice of P,({r,,}). Thus, A ' fo rms  an upper 
bound to the true free energy A. When P,({r,}) = P({r,}), we note that 
A ,  --- A, as is expected. 

Clearly, if P,({r,}) is varied subject to no other constraint than that of 
normalization, Eq. (I), the function which minimizes A,  will be the true 
distribution function P({r,}). If other constraints are present, then the mini- 
mum of A ,  with respect to the variation of P~({r,}) will give a best approxi- 
mation sub.ect to those constraints, in the sense of a least upper bound to the 
true free energy A. This is the variation principle we wish to use�9 

3. THE OPTIHUM SUPERPOSITION APPROXIMATION 

We introduce a superposition approximation in the sense of Eq. (3). 
Thus, we approximate P({r,}) by 

P,({r.}) =:- 4>,4>,-,'"~t (13) 

where, for example, 4>, is a function of all coordinates of the group of n 
particles save those of particle n. Thus, in the special case of the triplet 
function in Eq. (3), we could write, using this notation, 

4>,z = 4>a, 4>= = 4>z, 4>ta = 4>z (14)  

Substitution of Eq. (13) into (I 1) yields 

A.  : A + kT f .-. f v  4>"4>"-' "'" 4>' In 4', d{r,} 

+ k T  f "" f v 4>"4>"-' "'" ~t In ~.-x d{r~} 

+ ... + k r  f ... f ,  ... 4', In 4>, 

- k r  f ... f 4>.4'._~...4>~l.P({r.;)a{r.} (15) 

which is just the last term in question for the case that P*({r.}) is exact�9 From this, it is 
clear that the]ntegral in the first expression for zl, even though it averages A((r.}) properly 
over configuration space, misses supplying the value of A bocause it omits certain entropie 
contributions. 



Superposition Approximations from a Variation Principle 4] 

The constraints in this problem are the special decomposed form of P.({r.}) 
and normalization of Eq. (10). 

Taking the variation of A.  with respect to the form of the ~,'s, and 
subject to Eq. (10), we find, upon setting 8A~ : 0, that the coefficient of 3~,. 
is given by 

(kT -i- ~) f r [P,({r.})/~b.] dr~ 

f [P.({r~})/~] In[P.({r,,})/P({r,,})] dr~ --=- 0 (16) + kT 
ir 

in which )t is an undetermined multiplier. By symmetry, since all the ~b's are 
the same function of their arguments, the same equation holds for ~b~_~, etc. 
We need only investigate Eq. (16). 

Recognizing that ~,, does not depend upon r~, and setting kT W .~ equal 
to the "constant" kT:q we may rewrite Eq. (16) as 

(a + In q~.) f v [P.({rn})/~b.] dr~ 

= f r  [e.((r~})/~b,,] In[e((r,,}) ~./P.({r~})] dr~ (17) 

Writing a ~ --In K, this can be further rearranged to 

In ~ f r  [P.({r~})/~] ln[P((r,,}) ~jP.((r~})] drn 
= j'v [P,({r.})/q~] dr~ (18) 

Consider P({r.}) in the case that the nth particle is far removed (beyond the 
range of correlation) from the remaining n - I particles. Under this con- 
dition, denote P({r.}) by P((r.}). Denote e.({r.}), under the similar condition, 
by P.({r.}). Clearly, both P((r.}) and P.({r.}) depend only on the coordinates 
of  the n -- 1 particles other than the nth. In fact, we know that 

P({r.}) = (1/v)e((r,,..x}) (19) 

Equation (18) can be further transformed. Thus, by adding and sub- 
tracting P({r~}) in the numerator behind the logarithm on the right and 
P.({r~}) in the denominator, we obtain 

+ f ,  Jn l + - aro) 7-]i  
• ( f v  P.({r~})dr~)-x (20) 
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In 1 + {[P({r,}) -- P({r.})l/P({r.})} (21) 
1 + {[P,({r.}) -- P,({r.})]/P,({r.})} 

in Eq. (20) has about the range of  the intermolecular potential since P((r,,}) 
and P.({r.}) go to P({r.}) and P.({r.}), respectively, when r .  is outside the 
range of  correlation of  the remaining n -- 1 particles. Thus, the second in- 
tegral in the numerator on the right of  Eq. (20) is of  the order of  

f ~ . /  (v]V) f v  {P,(~r,o), r dr. (22) 

where c is the "volume of correlation" and elV = O(I/N), where N is the 
total number of molecules in the fluid. In the first integral in the numerator 
on the right of  Eq. (20), the quantity 

~b.P({r.})/P.({r.}) (23) 

is independent of r .  and may be moved in front of the integral. Thus, this 
term becomes 

ln[•.P({rn})/P,({r.})] f v [P,({r,,})/r & ,  (24) 

Substituting Eqs. (22) and (24) into (20) yields 

_ In r = ln~bnP({r"})+  v = In ~ O  
K P,({r.}) v 

and since we consider 
becomes 

(25) 

the thermodynamic limit in which N---~ 0% this 

l / x  = P({r .}) /P,({r .})  (26) 

Using Eq. (19), we have 

P,({r.}) = (K/V)P({r._~}) (27) 

We can add and substract P,({r.}) on the left side of  Eq. (27) to obtain 

P,({r,,}) + [P,({r,,}) -- P.({r.})] = (If/F')P({r._I}) (28) 

Integrating both sides of this equation over the whole space of  the n particles, 
w e  get 

f "'" f v  P,({r.})d{r.} + f ..- f ,  - e,({,.})] d{r.} 

= (K] V) f . . .  f r P({r._t}) d{r.} (29) 
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By Eq. (10), the first integral on the left is unity, and by the normalization of  
P({rn-z}), the integral on the right is also unity. The second integral on the 
left is again of order r ip  = O(I/N) and can be ignored. Thus, Eq. (29) 
becomes 4 

l = K (30) 

so that K is unity. With this, Eq. (26) becomes 

1 = [P({r=_z})ll/]lr (31) 

It is not necessary to have a bar over ~n,  because it does not depend on the 
coordinates of the nth particle. Thus, we achicve our final result: 

q>,, = le({r._,})/Vl/f f ._.,7._2""<~, (32) 

4. I N V E S T I G A T I O N  OF SPECIAL CASES 

We examine the conventional triplet case first. In this case, Eq. (32) 
becomes 

~b,~ = (e, dV)l~.>~,~ (33) 

If  we move particle 2 far from particle 1, 7e.~ and 7~a are unaffected, since 
particle 3 is already far from both particles I and 2 in each of them, respect- 
ively. Furthermore, it is well known that 

Pi~ = l /V a (34) 

Thus, by moving particles 1 and 2 in Eq. (33) far apart, we obtain 

,~,~ = (1/V~)17~7,~ (35) 
or 

7r>7~7,= = 1/V 3 (36) 

Since 7t2, 7za, and 713 must be equal by symmetry, this equation implies 
that 

ff~, = 7, . ,  = l l V  (37) 

Substitution in Eq. (33) yields 

9bi2 = VPl2 (38) 

4 Since K = I implies a = O, this would appear  to make  each t e rm in Eq. (16) vanish 
independently.  This  is a nonsense  result  which s tems  f rom the fact tha t  Eq. (30) is 
approximate  to the extent  that  terms o f  O(I[N)have been neglected. 
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so that 

P~3 = ~v.,q~z~,3 = VaPt2P.>3Pta (39) 

which is the standard Kirkwood superposition approximation. 
Thus, the optimum values of (~t~., etc., relative to the variation principle, 

are indeed given by the pair specific distribution functions Px2, etc. These 
are the values of the ~'s which provide the most nearly correct system free 
energy subject to the constraint of superposition. Thus, the Kirkwood super- 
position approximation cannot be improved on by any other pairwise de- 
composition of the triplet function. 

It is of interest to see what Eq. (32) requires of the superposition ap- 
proximation to the quadruplet distribution function. In this case, 

e~3, = ~.~..~x3,~.~, (40) 
and by Eq. (32), 

= v)/:x,.,:,,..,:.,,., Ol) 
The bars in Eq. (41) indicate that particle 4 is far from the others, a fact 
which we have singled out by prefacing the subscript 4 by a comma. If we now 
move particle 3 far from the others, we obtain from Eq. (41) 

~,~.a ~- (P,z/V2)/:,o.. ,~L,,$2.31 (42) 

where the double bar indicates that two particles have been moved beyond 
the correlation distance, and the two particles moved are again prefaced by a 
comma. In the double-barred symbols, we have exhausted all possibilities of 
moving particles out of range--all three particles have been moved out of 
range ofeach other. Thus, when we now move particle 2 out of range in Eq. 
(42), we obtain 

~t.~ = (l/V~)/~L24~.34~bo.a, (43) 

nothing happening to the last two factors in the denominator of Eq. (42). 
Rearranging Eq. (43), we get 

and since all the factors on the left must be identical by symmetry, 

Substitution of Eq. (45) into (42) gives 

~,~.~x_~., =/'I~ 

(45) 

(46) 
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and, again, by symmetry, 

__- ~ ~_ p l / 2  
12,3 12,4 --12 (47) 

Substitution of  Eq. (47) and its analogs into Eq. (41) gives 

$~,~ ----- (I/IOPIJ(PxzP..,3P13) t;~" (48) 

Substituting this, and the similar equations for 6v, t ,  ~b~3L, and ~3~, into 
Eq. (40) yields 

P*zs, = (1/V~) PI23PI24PlsaP2..~/Pv, Po.sP,sPttP.ztPs.t (49) 

This is the superposition function which yields a system free energy 
closest to the true free energy in the case of the quadruplet distribution. It is 
interesting that Eq. (49) agrees with the form proposed by Fishe~ and 
Kopeliovich ~"-~ through consideration of the limit of low density, and a process 
of  educated guessing. 

By a more lengthy, but exactly similar, procedure, we can find the 
approximation to the fifth-order distribution function. This proves to be 

Vs(pt~tPz~-,Ptza~PIa4:,P2~a~)(PIo.PtzPzsPz4P.2:P31Pzr, P.:~P~-,) PZ.~I~ = (50) 
PI~PI2tPI~Pz2sP13:,Pt4.~P~.v, P24.~P3a; 

The typical ~ function in this case is 

. ~ 1 ~  = vPl.~(e,~e,3P..~el,e~,e~)~,'3/(t',._3Pz.,,P~,P,33 ""- (50 

Clearly, Eq. (32) is capable of  dealing with the approximation at any order. 
It is to be noted especially [see Eqs. (33), (48), and (51)] that the q~'s, 

beyond the pair function ~z2, are not simply the corresponding specific 
distribution functions, but, rather, far more complicated combinations of 
distribution functions of  the same and lower orders. They are, however, 
well-defined functions of  distribution functions and are uniquely specified by 
the variation principle. 
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